Kapitel 11
¹ Lapierre, M. A., Vaala, S. E., & Linebarger, D. L. (2011). Influence of licensed spokescharacters and health cues on children's ratings of cereal taste. Archives of Pediatrics & Adolescent Medicine, 165(3), 229–234.
² Harris, J. L., Schwartz, M. B., & Brownell, K. D. (2010). Marketing foods to children and adolescents: Licensed characters and other promotions on packaged foods in the supermarket. Public Health Nutrition, 13(3), 409–417.
³ McDermott, L., O’Sullivan, T., Stead, M., & Hastings, G. (2006). International food advertising, pester power and its effects. International Journal of Advertising, 25(4), 513–539.
⁴ Folkvord, F., Bevelander, K. E., Rozendaal, E., & Hermans, R. (2022). Children’s food cue reactivity: Behavioral and neurobiological responses to food cues. Appetite, 168, 105700.
⁵ World Health Organization (WHO). (2016). Tackling food marketing to children in a digital world: trans-disciplinary perspectives.
⁶ Boyland, E. J., Nolan, S., Kelly, B., Tudur-Smith, C., Jones, A., Halford, J. C. G., & Robinson, E. (2016). Advertising as a cue to consume: A systematic review and meta-analysis. The American Journal of Clinical Nutrition, 103(2), 519–533.
⁷ Cairns, G., Angus, K., Hastings, G., & Caraher, M. (2013). Systematic reviews of the evidence on the nature, extent and effects of food marketing to children. Appetite, 62, 209–215.
⁸ Kaur, A., Scarborough, P., & Rayner, M. (2016). A systematic review of the impact of health-related claims on dietary choices. The International Journal of Behavioral Nutrition and Physical Activity, 13, 3.
⁹ Nestle, M. (2007). Food Politics: How the Food Industry Influences Nutrition and Health (2nd ed.). University of California Press.
¹⁰ Cohen, D. A., & Babey, S. H. (2012). Contextual influences on eating behaviours: Heuristic processing and dietary choices. Obesity Reviews, 13(9), 766–779.
¹⁴ Medienpädagogischer Forschungsverbund Südwest (mpfs). (2022). JIM-Studie 2022: Jugend, Information, Medien. https://www.mpfs.de/studien/jim-studie/2022/
¹⁵ Schorb, B. (2018). Medienkompetenzförderung in der Schule: Anspruch und Wirklichkeit. Merz | Medien + Erziehung, 62(2), 22–27.
¹⁶ Taillie, L. S., Reyes, M., Colchero, M. A., Popkin, B. M., & Corvalán, C. (2020). Evaluation of Chile’s Law of Food Labeling and Advertising. PLOS Medicine, 17(2), e1003015.
¹⁷ Health Canada. (2023). Policy update on restricting food advertising directed at children. https://www.canada.ca/en/services/health.html
¹⁸ UK Department of Health and Social Care. (2022). New restrictions on advertising unhealthy foods online and on TV. https://www.gov.uk/government/news
¹⁹ Foodwatch Deutschland. (2023). Zucker, Fett und leere Versprechen. https://www.foodwatch.org
²⁰ LobbyControl. (2021). Die Macht der Lebensmittel-Lobby in Deutschland. https://www.lobbycontrol.de
²¹ Bundesministerium für Ernährung und Landwirtschaft (BMEL). (2023). Eckpunkte für ein Gesetz zur Beschränkung von Kindermarketing für ungesunde Lebensmittel. https://www.bmel.de
Kapitel 12
¹ EFSA. (2023). Risk assessment of multiple chemical exposures. European Food Safety Authority. https://www.efsa.europa.eu
² Landrigan, P. J., & Fuller, R. (2015). Environmental pollution: An under-recognized threat to children's health, especially in low- and middle-income countries. Environmental Health Perspectives, 123(3), 201–209. https://doi.org/10.1289/ehp.1408295
³ Umweltbundesamt. (2023). Einsatz von Pflanzenschutzmitteln in Deutschland. https://www.umweltbundesamt.de
⁴ BfR. (2022). Pestizidrückstände in Lebensmitteln: Jahresbericht. Bundesinstitut für Risikobewertung. https://www.bfr.bund.de
⁵ IPEN. (2021). Toxic pesticides in our food chain. International Pollutants Elimination Network. https://ipen.org
⁶ IARC. (2015). Evaluation of five organophosphate insecticides and herbicides. IARC Monographs, 112. https://www.iarc.who.int
⁷ BMEL. (2023). Glyphosat in Deutschland – Zwischen Verbot und Verlängerung. Bundesministerium für Ernährung und Landwirtschaft. https://www.bmel.de
⁸ Kortenkamp, A. (2007). Ten years of mixing cocktails: A review of combination effects of endocrine-disrupting chemicals. Environmental Health Perspectives, 115(S-1), 98–105. https://doi.org/10.1289/ehp.9357
⁹ Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., ... & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10), e0185809. https://doi.org/10.1371/journal.pone.0185809
¹⁰ Curl, C. L., Fenske, R. A., & Elgethun, K. (2003). Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environmental Health Perspectives, 111(3), 377–382. https://doi.org/10.1289/ehp.5754
¹¹ Greenpeace. (2020). Toxic exports: Europe’s banned pesticides in global food chains. https://www.greenpeace.org
¹² UNFAO. (2021). The human cost of pesticide use in low-income countries. United Nations Food and Agriculture Organization. https://www.fao.org
¹³ Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. EXS, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
¹⁴ Lanphear, B. P., Hornung, R., Khoury, J., Yolton, K., Baghurst, P., Bellinger, D. C., ... & Roberts, R. (2005). Low-level environmental lead exposure and children's intellectual function: An international pooled analysis. Environmental Health Perspectives, 113(7), 894–899. https://doi.org/10.1289/ehp.7688
¹⁵ EFSA. (2021). Scientific opinion on lead in food. European Food Safety Authority. https://www.efsa.europa.eu
¹⁶ EFSA. (2020). Cadmium dietary exposure in the European population. https://www.efsa.europa.eu
¹⁷ ATSDR. (2012). Toxicological profile for cadmium. U.S. Department of Health and Human Services. https://www.atsdr.cdc.gov
¹⁸ Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609–662. https://doi.org/10.1080/10408440600845619
¹⁹ WHO. (2010). Exposure to mercury: A major public health concern. World Health Organization. https://www.who.int
²⁰ European Commission. (2021). Arsenic in food – risk assessment and management. https://ec.europa.eu
²¹ EFSA. (2014). Scientific opinion on arsenic in food. EFSA Journal, 12(3), 3597. https://doi.org/10.2903/j.efsa.2014.3597
²² UNICEF. (2020). The toxic truth: Children’s exposure to lead pollution. United Nations Children’s Fund. https://www.unicef.org
²³ Leslie, H. A., van Velzen, M. J. M., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163, 107199. https://doi.org/10.1016/j.envint.2022.107199
²⁴ SAPEA. (2019). A scientific perspective on microplastics in nature and society. Science Advice for Policy by European Academies. https://www.sapea.info
²⁵ Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R. B. O., Lundebye, A.-K., & Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133, 336–348. https://doi.org/10.1016/j.marpolbul.2018.05.047
²⁶ Kosuth, M., Mason, S. A., & Wattenberg, E. V. (2018). Anthropogenic contamination of tap water, beer, and sea salt. PLOS ONE, 13(4), e0194970. https://doi.org/10.1371/journal.pone.0194970
²⁷ Orb Media. (2018). Plus plastic: Microplastics found in 93% of bottled water tested. https://orbmedia.org
²⁸ Liebezeit, G., & Liebezeit, E. (2014). Synthetic particles as contaminants in German beers. Food Additives & Contaminants: Part A, 31(9), 1574–1578. https://doi.org/10.1080/19440049.2014.945099
²⁹ Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? Environmental Science & Technology, 51(12), 6634–6647. https://doi.org/10.1021/acs.est.7b00423
³⁰ Yong, C. Q. Y., Valiyaveettil, S., & Tang, B. L. (2020). Toxicity of microplastics and nanoplastics in mammalian systems. International Journal of Environmental Research and Public Health, 17(5), 1509. https://doi.org/10.3390/ijerph17051509
³¹ European Commission. (2023). Restricting intentionally added microplastics under REACH. https://ec.europa.eu
³² UNEP. (2021). From pollution to solution: A global assessment of marine litter and plastic pollution. United Nations Environment Programme. https://www.unep.org
³³ Umweltbundesamt. (2022). Verpackungsabfall in Deutschland. https://www.umweltbundesamt.de
⁴ Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., ... & Riediker, S. (2002). Acrylamide from Maillard reaction products. Nature, 419(6906), 449–450. https://doi.org/10.1038/419449a
³⁵ IARC. (1994). Some industrial chemicals. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Volume 60. https://monographs.iarc.who.int
³⁶ EFSA. (2015). Scientific opinion on acrylamide in food. EFSA Journal, 13(6), 4104. https://doi.org/10.2903/j.efsa.2015.4104
³⁷ Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998–5006. https://doi.org/10.1021/jf020302f
³⁸ Hogervorst, J. G. F., Schouten, L. J., Konings, E. J. M., Goldbohm, R. A., & van den Brandt, P. A. (2008). A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiology Biomarkers & Prevention, 17(3), 603–610. https://doi.org/10.1158/1055-9965.EPI-07-2821
³⁹ EFSA. (2019). Acrylamide exposure in infants and young children. https://www.efsa.europa.eu
⁴⁰ European Commission. (2018). Regulation (EU) 2017/2158 establishing mitigation measures and benchmark levels for the reduction of acrylamide. https://eur-lex.europa.eu
⁴¹ FDA. (2020). Guidance for industry: Acrylamide in foods. https://www.fda.gov
⁴² Gore, A. C., Chappell, V. A., Fenton, S. E., Flaws, J. A., Nadal, A., Prins, G. S., ... & Zoeller, R. T. (2015). EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocrine Reviews, 36(6), E1–E150. https://doi.org/10.1210/er.2015-1010
⁴³ BfR. (2021). Migration von Verpackungsmaterialien in Lebensmittel. Bundesinstitut für Risikobewertung. https://www.bfr.bund.de
⁴⁴ Rochester, J. R. (2013). Bisphenol A and human health: A review of the literature. Reproductive Toxicology, 42, 132–155. https://doi.org/10.1016/j.reprotox.2013.08.008
⁴⁵ Braun, J. M. (2017). Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nature Reviews Endocrinology, 13, 161–173. https://doi.org/10.1038/nrendo.2016.186
⁴⁶ EFSA. (2023). Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. https://www.efsa.europa.eu
⁴⁷ Wormuth, M., Scheringer, M., Vollenweider, M., & Hungerbühler, K. (2006). What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Analysis, 26(3), 803–824. https://doi.org/10.1111/j.1539-6924.2006.00770.x
⁴⁸ EU Chemicals Agency. (2021). Annex XV restriction report on selected phthalates. https://echa.europa.eu
⁴⁹ Geueke, B., Groh, K. J., & Muncke, J. (2018). Food packaging in the circular economy: Overview of chemical safety aspects. Food Additives & Contaminants: Part A, 35(9), 1657–1671. https://doi.org/10.1080/19440049.2018.1480840
⁵⁰ European Commission. (2020). Chemicals Strategy for Sustainability – Towards a Toxic-Free Environment. https://ec.europa.eu
⁵¹ Glüge, J., Scheringer, M., Cousins, I. T., DeWitt, J. C., Goldenman, G., Herzke, D., ... & Wang, Z. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts, 22(12), 2345–2373. https://doi.org/10.1039/D0EM00291G
⁵² Grandjean, P., & Clapp, R. (2015). Perfluorinated alkyl substances: Emerging insights into health risks. New Solutions: A Journal of Environmental and Occupational Health Policy, 25(2), 147–163. https://doi.org/10.2190/NS.25.2.f
⁵³ BfR. (2022). Teflon und PTFE: Gesundheitliche Bewertung. Bundesinstitut für Risikobewertung. https://www.bfr.bund.de
⁵⁴ ATSDR. (2021). Toxicological profile for perfluoroalkyls. U.S. Department of Health and Human Services. https://www.atsdr.cdc.gov
⁵⁵ EFSA. (2020). Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA Journal, 18(9), 6223. https://doi.org/10.2903/j.efsa.2020.6223
⁵⁶ ECHA. (2023). EU-wide PFAS restriction proposal submitted. European Chemicals Agency. https://echa.europa.eu
⁵⁷ Lijinsky, W. (1999). N-Nitroso compounds in the diet. Mutation Research, 443(1–2), 129–138. https://doi.org/10.1016/S1383-5742(99)00015-4
⁵⁸ Peto, R., Gray, R., Brantom, P., & Grasso, P. (1991). Dose and time relationships for tumor induction in the liver and esophagus of rats by N-nitrosodimethylamine. Cancer Research, 51(23 Pt 2), 6452–6461.
⁵⁹ IARC. (2010). Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monographs, 94. https://monographs.iarc.who.int
⁶⁰ EFSA. (2017). Re-evaluation of nitrites (E 249–250) as food additives. EFSA Journal, 15(6), 4786. https://doi.org/10.2903/j.efsa.2017.4786
⁶¹ Stiftung Warentest. (2019). Wurstwaren im Test – Nitrit, Fett und Zusatzstoffe. https://www.test.de
⁶² Exley, C. (2013). Human exposure to aluminium. Environmental Science: Processes & Impacts, 15(10), 1807–1816. https://doi.org/10.1039/c3em00374d
⁶³ Bundesinstitut für Risikobewertung (BfR). (2020). Aluminiumübertragung durch Lebensmittelkontaktmaterialien. https://www.bfr.bund.de
⁶⁴ Walton, J. R. (2014). Chronic aluminum intake causes Alzheimer’s disease: Applying Sir Austin Bradford Hill’s causality criteria. Journal of Alzheimer’s Disease, 40(4), 765–838. https://doi.org/10.3233/JAD-132204
⁶⁵ EFSA. (2008). Safety of aluminium from dietary intake. EFSA Journal, 754, 1–34. https://doi.org/10.2903/j.efsa.2008.754
⁶⁶ Stiftung Warentest. (2017). Aluminium im Essen – So vermeiden Sie unnötige Belastung. https://www.test.de
⁶⁷ Bouwmeester, H., Dekkers, S., Noordam, M. Y., Hagens, W. I., Bulder, A. S., de Heer, C., ... & Sips, A. J. A. M. (2009). Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53(1), 52–62. https://doi.org/10.1016/j.yrtph.2009.01.008
⁶⁸ Bettini, S., Boutet-Robinet, E., Cartier, C., Coméra, C., Gaultier, E., Dupuy, J., ... & Carrière, M. (2017). Food-grade TiO₂ impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in rats. Scientific Reports, 7, 40373. https://doi.org/10.1038/srep40373
⁶⁹ Pinget, G., Tan, J., Janac, B., Kaakoush, N. O., Angelatos, A. S., O'Sullivan, J., ... & Macia, L. (2019). Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction. Frontiers in Nutrition, 6, 57. https://doi.org/10.3389/fnut.2019.00057
⁷⁰ EFSA. (2021). Safety assessment of titanium dioxide (E171) as a food additive. EFSA Journal, 19(5), 6585. https://doi.org/10.2903/j.efsa.2021.6585
⁷¹ Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL). (2023). Monitoring zur Lebensmittelsicherheit. https://www.bvl.bund.de
⁷² ANSES. (2021). Titandioxid (E171): Frankreichs nationales Verbot. Agence nationale de sécurité sanitaire. https://www.anses.fr
⁷³ Neltner, T. G., Alger, H. M., Leonard, J. E., & Maffini, M. V. (2013). Data gaps in toxicity testing of chemicals allowed in food in the United States. Reproductive Toxicology, 42, 85–94. https://doi.org/10.1016/j.reprotox.2013.07.019
⁷⁴ UN FAO. (2017). Pesticide use in developing countries – A call for action. https://www.fao.org
⁷⁵ Kortenkamp, A., & Faust, M. (2018). Regulate to reduce chemical mixture risk. Science, 361(6399), 224–226. https://doi.org/10.1126/science.aat9219
⁷⁶ Gore, A. C., Chappell, V. A., Fenton, S. E., Flaws, J. A., Nadal, A., Prins, G. S., ... & Zoeller, R. T. (2015). EDC-2: The Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocrine Reviews, 36(6), E1–E150. https://doi.org/10.1210/er.2015-1010
⁷⁷ WHO & UNEP. (2012). State of the science of endocrine disrupting chemicals. https://www.who.int
⁷⁸ Escher, B. I., Aїt-Aїssa, S., Behnisch, P. A., Brack, W., Brion, F., Brouwer, A., ... & van der Oost, R. (2018). Effect-based trigger values for in vitro and in vivo bioassays: Reading across from existing water quality guidelines. Environmental International, 120, 474–483. https://doi.org/10.1016/j.envint.2018.08.010
⁷⁹ Curl, C. L., Beresford, S. A., Fenske, R. A., Fitzpatrick, A. L., & Kantor, E. D. (2019). Estimating pesticide exposure from dietary intake and organic food choices. Environmental Health Perspectives, 127(7), 077010. https://doi.org/10.1289/EHP6044
Kapitel 13
¹ Cummings, D. E., & Overduin, J. (2007). Gastrointestinal regulation of food intake. The Journal of Clinical Investigation, 117(1), 13–23. https://doi.org/10.1172/JCI30227
² Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., & Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature, 443(7109), 289–295. https://doi.org/10.1038/nature05026
³ Moss, M. (2013). Salt Sugar Fat: How the Food Giants Hooked Us. New York: Random House.
⁴ Rogers, P. J., & Blundell, J. E. (1990). Umami and appetite: Effects of monosodium glutamate on hunger and food intake in human subjects. Physiology & Behavior, 48(6), 801–804. https://doi.org/10.1016/0031-9384(90)90284-8
⁵ Bolhuis, D. P., Lakemond, C. M., de Wijk, R. A., Luning, P. A., & de Graaf, C. (2011). Effect of salt intensity in soup on ad libitum intake and on salt and energy intake. Appetite, 56(1), 222–227. https://doi.org/10.1016/j.appet.2010.12.014
⁶ Panda, S. (2016). Circadian physiology of metabolism. Science, 354(6315), 1008–1015. https://doi.org/10.1126/science.aah4967
⁷ Hall, K. D., & Kahan, S. (2018). Maintenance of lost weight and long-term management of obesity. Medical Clinics, 102(1), 183–197. https://doi.org/10.1016/j.mcna.2017.08.012
⁸ Janssen, P., Vanden Berghe, P., Verschueren, S., Lehmann, A., Depoortere, I., & Tack, J. (2011). The role of the migrating motor complex in regulating satiety. Neurogastroenterology & Motility, 23(12), 1085–1091. https://doi.org/10.1111/j.1365-2982.2011.01781.x
⁹ Pellissier, S., Dantzer, C., Mondillon, L., Trocme, C., Gauchez, A. S., Ducros, V., ... & Bonaz, B. (2014). Relationship between vagus nerve activity and digestive symptoms in patients with irritable bowel syndrome. Neurogastroenterology & Motility, 26(5), 687–695. https://doi.org/10.1111/nmo.12208
¹⁰Ogden, J., Coop, N., Cousins, C., Crump, R., Field, L., Hughes, S., & Woodger, N. (2013). Distraction, the desire to eat and food intake. Health Psychology, 32(4), 385–392. https://doi.org/10.1037/a0028495
¹¹Higgs, S. (2015). Memory and its role in appetite regulation. Physiology & Behavior, 152, 465–471. https://doi.org/10.1016/j.physbeh.2015.06.006
¹²de Graaf, C., & Kok, F. J. (2010). Slow food, fast food and the control of food intake. Nature Reviews Endocrinology, 6(5), 290–293. https://doi.org/10.1038/nrendo.2010.41
¹³Myers, M. G., Leibel, R. L., Seeley, R. J., & Schwartz, M. W. (2010). Obesity and leptin resistance: distinguishing cause from effect. Trends in Endocrinology & Metabolism, 21(11), 643–651. https://doi.org/10.1016/j.tem.2010.08.002
¹⁴Spiegel, K., Tasali, E., Penev, P., & Van Cauter, E. (2004). Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Annals of Internal Medicine, 141(11), 846–850. https://doi.org/10.7326/0003-4819-141-11-200412070-00008
¹⁵Rolls, B. J., Rolls, E. T., Rowe, E. A., & Sweeney, K. (1981). Sensory specific satiety in man. Physiology & Behavior, 27(1), 137–142. https://doi.org/10.1016/0031-9384(81)90319-3
¹⁶Morgan, L. M., Shi, J. W., Hampton, S. M., & Frost, G. (1998). Effect of meal timing and glycaemic index on glucose control and insulin secretion in healthy volunteers. British Journal of Nutrition, 80(2), 149–155. https://doi.org/10.1017/S0007114598001280
¹⁷Zmora, N., Suez, J., & Elinav, E. (2019). You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology & Hepatology, 16(1), 35–56. https://doi.org/10.1038/s41575-018-0061-2
¹⁸Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860–867. https://doi.org/10.1038/nature05485
¹⁹Wansink, B. (2010). Mindless Eating: Why We Eat More Than We Think. New York: Bantam Books.
²⁰Robinson, E., Kersbergen, I., & Higgs, S. (2014). Eating ‘attentively’ reduces later energy consumption in overweight and obese females. Appetite, 76, 161–165. https://doi.org/10.1016/j.appet.2014.02.019
²¹Higgs, S., Williamson, A. C., Rotshtein, P., & Humphreys, G. W. (2008). Sensory-specific satiety is intact in amnesia. Appetite, 51(2), 354–360. https://doi.org/10.1016/j.appet.2008.03.005
²²Gearhardt, A. N., Corbin, W. R., & Brownell, K. D. (2009). Food addiction: An examination of the diagnostic criteria for dependence. Journal of Addiction Medicine, 3(1), 1–7. https://doi.org/10.1097/ADM.0b013e318193c993
²³Porges, S. W. (2009). The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleveland Clinic Journal of Medicine, 76(Suppl 2), S86–S90. https://doi.org/10.3949/ccjm.76.s2.17
²⁴Cunningham, H. E., et al. (2021). The effect of smartphone use during meals on caloric intake and memory. Journal of Nutrition Education and Behavior, 53(2), 128–134. https://doi.org/10.1016/j.jneb.2020.09.005
Kapitel 14
¹ Ames, B. N. (2006). Low micronutrient intake may accelerate the degenerative diseases of aging through allocation of scarce micronutrients by triage. Proceedings of the National Academy of Sciences, 103(47), 17589–17594. https://doi.org/10.1073/pnas.0608757103
² Gröber, U. (2014). Mikronährstoffe – Metabolic Tuning: Prävention und Therapie mit Mikronährstoffen. Wissenschaftliche Verlagsgesellschaft Stuttgart.
³ Ames, B. N. (2004). A role for supplements in optimizing health: The metabolic tune-up. Archives of Biochemistry and Biophysics, 423(1), 227–234. https://doi.org/10.1016/j.abb.2003.11.010
⁴ Schmölz, L., Birringer, M., & Lorkowski, S. (2021). Bioaktive Mikronährstoffe – Grundlagen und Bedeutung für die Ernährung. Ernährungs Umschau, 68(9), 148–157.
⁵ Gropper, S. S., & Smith, J. L. (2012). Advanced Nutrition and Human Metabolism (6th ed.). Cengage Learning.
⁶ Manson, J. E., Brannon, P. M., Rosen, C. J., & Taylor, C. L. (2016). Vitamin D deficiency—Is there really a pandemic? New England Journal of Medicine, 375(19), 1817–1820. https://doi.org/10.1056/NEJMp1608005
⁷ Gröber, U., Holzhauer, P., Kisters, K., Schmidt, J., & Neurohr, C. (2013). Mikronährstoffe bei Arzneimitteltherapie. Deutsche Apotheker Zeitung, 153(7), 78–84.
⁸ Kisters, K., & Louwen, F. (2011). Medikamentös induzierte Hypomagnesiämie. Der Internist, 52, 1349–1358. https://doi.org/10.1007/s00108-011-2886-7
⁹ Gröber, U. (2010). Arzneimittel und Mikronährstoffe: Wechselwirkungen, Nebenwirkungen, Therapieoptimierung. Wissenschaftliche Verlagsgesellschaft Stuttgart.
¹⁰ Vogiatzoglou, A., et al. (2008). Determinants of B-vitamin status in older adults in the United Kingdom. British Journal of Nutrition, 100(5), 1054–1062. https://doi.org/10.1017/S0007114508968261
¹¹ Institute of Medicine. (1998). Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press.
¹² Kennedy, D. O. (2016). B Vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 8(2), 68. https://doi.org/10.3390/nu8020068
¹³ Mikkelsen, K., Stojanovska, L., & Apostolopoulos, V. (2016). The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas, 93, 103–111. https://doi.org/10.1016/j.maturitas.2016.04.003
¹⁴ Mooren, F. C., & Völker, K. (2011). Magnesium und Muskelstoffwechsel. Deutsche Zeitschrift für Sportmedizin, 62(9), 255–259.
¹⁵ Gröber, U., Reichrath, J., & Holick, M. F. (2015). Vitamin D: Update 2015. Dermato-Endocrinology, 7(1), e1039214. https://doi.org/10.1080/19381980.2015.1039214
¹⁶ Weitz, D., Weinert, L. S., & Ribeiro, J. P. (2010). Vitamin B12 deficiency in metformin-treated type 2 diabetes patients. Archives of Internal Medicine, 170(2), 192–193. https://doi.org/10.1001/archinternmed.2009.444
¹⁷ Barragán, R., et al. (2016). Genetic variants in vitamin B12 metabolism-related genes and risk of colorectal cancer in the EPIC cohort. Scientific Reports, 6, 37051. https://doi.org/10.1038/srep37051
¹⁸ Monteiro, C. A., Moubarac, J. C., Cannon, G., Ng, S. W., & Popkin, B. (2013). Ultra-processed products are becoming dominant in the global food system. Obesity Reviews, 14(Suppl. 2), 21–28. https://doi.org/10.1111/obr.12107
¹⁹ Lotta, L. A., et al. (2016). Association between low-density lipoprotein cholesterol–lowering genetic variants and risk of type 2 diabetes. JAMA, 316(13), 1383–1391. https://doi.org/10.1001/jama.2016.14568
²⁰ Popkin, B. M. (2006). Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. The American Journal of Clinical Nutrition, 84(2), 289–298. https://doi.org/10.1093/ajcn/84.2.289
²¹ Wirth, R., et al. (2020). Ernährung im Alter. Deutsches Ärzteblatt, 117(20), 348–354. https://doi.org/10.3238/arztebl.2020.0348
²² Schwalfenberg, G. K. (2011). The alkaline diet: Is there evidence that an alkaline pH diet benefits health? Journal of Environmental and Public Health, 2012, 727630. https://doi.org/10.1155/2012/727630
²³ Scientific Advisory Committee on Nutrition (SACN). (2016). Vitamin D and Health. Public Health England. https://www.gov.uk/government/publications/sacn-vitamin-d-and-health-report
²⁴ Eby, G. A., & Eby, K. L. (2006). Rapid recovery from major depression using magnesium treatment. Medical Hypotheses, 67(2), 362–370. https://doi.org/10.1016/j.mehy.2006.01.047
²⁵ Berthold, H. K., & Gouni-Berthold, I. (2012). Auswirkungen von Statinen auf den Mikronährstoffstatus. Deutsche Medizinische Wochenschrift, 137(23), 1245–1250. https://doi.org/10.1055/s-0032-1304949
²⁶ Schlienger, R. G., & Krähenbühl, S. (2004). Medikamenten-induzierte Nährstoffmängel. Therapeutische Umschau, 61(6), 359–365.
²⁷ Brion, M. J. A., et al. (2010). Maternal folate supplementation and offspring attention deficit hyperactivity disorder. Archives of Disease in Childhood, 95(12), 960–965. https://doi.org/10.1136/adc.2009.176164
²⁸ Pfeiffer, C. M., et al. (2013). Laboratory indicators of B vitamin status in the US population. American Journal of Clinical Nutrition, 97(2), 437–447. https://doi.org/10.3945/ajcn.112.048124
²⁹ Bailey, R. L., et al. (2015). Estimation of total usual calcium and vitamin D intakes in the United States. Journal of Nutrition, 140(4), 817–822. https://doi.org/10.3945/jn.109.118539
³⁰ Ames, B. N. (2018). Prolonging healthy aging: Longevity vitamins and proteins. Proceedings of the National Academy of Sciences, 115(43), 10836–10844. https://doi.org/10.1073/pnas.1809045115
31 Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374–381. https://doi.org/10.1038/nrendo.2009.106
³² McEwen, B. S. (2006). Protective and damaging effects of stress mediators: Central role of the brain. Dialogues in Clinical Neuroscience, 8(4), 367–381. https://doi.org/10.31887/DCNS.2006.8.4/bmcewen
³³ Elmadfa, I., & Leitzmann, C. (2019). Ernährung des Menschen (6. Aufl.). UTB.
³⁴ Schubert, C., & Schüssler, G. (2009). Stressmedizin: Biopsychosoziale Grundlagen. Elsevier.
³⁵ Gleichmann, M., & Mattson, M. P. (2011). Neuronal calcium homeostasis and dysregulation. Antioxidants & Redox Signaling, 14(7), 1261–1273. https://doi.org/10.1089/ars.2010.3386
³⁶ O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G., & Cryan, J. F. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 277, 32–48. https://doi.org/10.1016/j.bbr.2014.07.027
³⁷ Kennedy, D. O. (2016). B Vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 8(2), 68. https://doi.org/10.3390/nu8020068
³⁸ Heaney, R. P. (2003). Long-latency deficiency disease: Insights from calcium and vitamin D. The American Journal of Clinical Nutrition, 78(5), 912–919. https://doi.org/10.1093/ajcn/78.5.912
³⁹ Cousins, R. J., & Lönnerdal, B. (2006). Zinc. In B. A. Bowman & R. M. Russell (Eds.), Present Knowledge in Nutrition (9th ed., pp. 445–457). ILSI Press.
⁴⁰ Yehuda, S., Rabinovitz, S., & Mostofsky, D. I. (2005). Essential fatty acids and the brain: From infancy to aging. Neurobiology of Aging, 26(1), 98–102. https://doi.org/10.1016/j.neurobiolaging.2005.08.003
⁴¹ Fava, M., & Mischoulon, D. (2009). Folate in depression: Efficacy, safety, differences in formulations, and clinical issues. The Journal of Clinical Psychiatry, 70(12), 1570–1572. https://doi.org/10.4088/JCP.09bs06227blu
⁴² LeDoux, J. (2002). Das Netz der Gefühle: Wie Emotionen entstehen. München: Piper.
⁴³ Adams, J. B., Audhya, T., McDonough-Means, S., Rubin, R. A., Quig, D., Geis, E., ... & Lee, W. (2011). Effect of a vitamin/mineral supplement on children and adults with autism. BMC Pediatrics, 11(1), 111. https://doi.org/10.1186/1471-2431-11-111
⁴⁴ Logan, A. C., & Jacka, F. N. (2014). Nutritional psychiatry research: An emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. Journal of Physiological Anthropology, 33(1), 22. https://doi.org/10.1186/1880-6805-33-22
⁴⁵ Bender, D. A. (2003). Nutritional Biochemistry of the Vitamins (2nd ed.). Cambridge University Press.
⁴⁶ Delgado, P. L. (2000). Depression: The case for a monoamine deficiency. The Journal of Clinical Psychiatry, 61(6), 7–11.
⁴⁷ Porges, S. W. (2011). The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, and self-regulation. Norton Series on Interpersonal Neurobiology.
⁴⁸ Galland, L. (2010). The gut microbiome and the brain. The Journal of Medicinal Food, 13(1), 12–20. https://doi.org/10.1089/jmf.2009.0115
Kapitel 15
¹ Kaur, M., & Singh, M. (2020). Superfoods: Global trends, opportunities, and challenges. Food Reviews International, 36(6), 552–567. https://doi.org/10.1080/87559129.2019.1630633
² Loyer, J. (2016). The rise of superfoods: How wellness culture turned humble ingredients into powerful commodities. Cultural Studies Review, 22(1), 1–25. https://doi.org/10.5130/csr.v22i1.4743
³ Johnston, J., & Baumann, S. (2014). Foodies: Democracy and distinction in the gourmet foodscape. Routledge.
⁴ Scrinis, G. (2013). Nutritionism: The science and politics of dietary advice. Columbia University Press.
⁵ Schuldt, J. P., & Schwarz, N. (2010). The “organic” path to obesity? Organic claims influence calorie judgments and exercise recommendations. Judgment and Decision Making, 5(3), 144–150.
⁶ Bourdieu, P. (1984). Distinction: A Social Critique of the Judgement of Taste. Harvard University Press.
⁷ Johnston, J., & Baker, L. (2005). Eating outside the box: FoodShare’s Good Food Box and the challenge of scale. Agriculture and Human Values, 22(3), 313–325.
⁸ Cena, H., & Calder, P. C. (2020). Defining a healthy diet: Evidence for the role of contemporary dietary patterns in health and disease. Nutrients, 12(2), 334. https://doi.org/10.3390/nu12020334
⁹ Scrinis, G. (2013). Nutritionism: The science and politics of dietary advice. Columbia University Press.
⁰ Nieman, D. C., et al. (2012). Chia seed supplementation and disease risk factors in overweight women: A metabolomics approach. Journal of Alternative and Complementary Medicine, 18(7), 700–708. https://doi.org/10.1089/acm.2011.0443
¹¹ Burdge, G. C., & Calder, P. C. (2005). Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reproduction Nutrition Development, 45(5), 581–597. https://doi.org/10.1051/rnd:2005047
¹² Imran, M., et al. (2015). Linum usitatissimum (flaxseed) a potential functional food source. Journal of Medicinal Plants Research, 9(7), 273–279. https://doi.org/10.5897/JMPR2014.5665
¹³ Wu, X., et al. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry, 52(12), 4026–4037. https://doi.org/10.1021/jf049696w
¹⁴ Silva, J. B. M. da, et al. (2014). Açai (Euterpe oleracea Mart.): A new source of anthocyanins in the Brazilian diet. Journal of Food Composition and Analysis, 33(1), 58–63. https://doi.org/10.1016/j.jfca.2013.11.001
¹⁵ Prior, R. L., et al. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. Journal of Agricultural and Food Chemistry, 46(7), 2686–2693. https://doi.org/10.1021/jf980145d
¹⁶ Gonzales, G. F., et al. (2001). Effect of Lepidium meyenii (Maca) on sexual desire and its absent relationship with serum testosterone levels in healthy adult men. Andrologia, 33(6), 367–372. https://doi.org/10.1046/j.1439-0272.2001.00467.x
¹⁷ Jones, A. M. (2014). Dietary nitrate supplementation and exercise performance. Sports Medicine, 44(1), 35–45. https://doi.org/10.1007/s40279-013-0107-9
¹⁸ Chacko, S. M., et al. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5(13). https://doi.org/10.1186/1749-8546-5-13
¹⁹ Herbert, V. (1994). Vitamin B12: Plant sources, requirements, and assay. American Journal of Clinical Nutrition, 39(6), 1073–1078. https://doi.org/10.1093/ajcn/39.6.1073
²⁰ Potterat, O. (2010). Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76(1), 7–19. https://doi.org/10.1055/s-0029-1186218
²¹ Stintzing, F. C., & Carle, R. (2005). Cactus fruits – a neglected food resource. Plant Foods for Human Nutrition, 60(2), 147–162. https://doi.org/10.1007/s11130-005-8627-x
²² Alvarez-Jubete, L., et al. (2009). Nutritive value and antioxidant capacity of pseudocereals and their contribution to dietary diversity. Journal of Cereal Science, 49(3), 390–395. https://doi.org/10.1016/j.jcs.2008.11.002
²³ Jacobsen, S.-E. (2011). The situation for quinoa and its production in Bolivia: From staple food to cash crop. FAO Quinoa Papers, 1–12.
⁴ Pollan, M. (2008). In Defense of Food: An Eater’s Manifesto. Penguin Press.
²⁵ Berry, W. (2009). Bringing it to the Table: On Farming and Food. Counterpoint.
²⁶ Nestle, M. (2013). Food Politics: How the Food Industry Influences Nutrition and Health (10th Anniversary Ed.). University of California Press.
²⁷ Watzl, B. (2016). Ernährungsempfehlungen im Wandel: Was ist wissenschaftlich gesichert? Forum Ernährung heute, 4, 12–18.
²⁸ Holt-Lunstad, J., et al. (2015). Loneliness and social isolation as risk factors for mortality: A meta-analytic review. Perspectives on Psychological Science, 10(2), 227–237. https://doi.org/10.1177/1745691614568352

